Numerical Methods for Discrete DoubleBarrier Option Pricing Based on Merton Jump Diffusion Model

نویسندگان

  • Mingjia Li
  • M. J. Li
چکیده

As a kind of weak-path dependent options, barrier options are an important kind of exotic options. Because the pricing formula for pricing barrier options with discrete observations cannot avoid computing a high dimensional integral, numerical calculation is time-consuming. In the current studies, some scholars just obtained theoretical derivation, or gave some simulation calculations. Others impose underlying assets on some strong assumptions, for example, a lot of calculations are based on the Black-Scholes model. This thesis considers Merton jump diffusion model as the basic model to derive the pricing formula of discrete double barrier option; numerical calculation method is used to approximate the continuous convolution by calculating discrete convolution. Then we compare the results of theoretical calculation with simulation results by Monte Carlo method, to verify their efficiency and accuracy. By comparing the results of degeneration constant parameter model with the results of previous models we verified the calculation method is correct indirectly. Compared with the Monte Carlo simulation method, the numerical results are stable. Even if we assume the simulation results are accurate, the time consumed by the numerical method to achieve the same accuracy is much less than the Monte Carlo simulation method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Option Pricing on Commodity Prices Using Jump Diffusion Models

In this paper, we aim at developing a model for option pricing to reduce the risks associated with Ethiopian commodity prices fluctuations. We used the daily closed Unwashed Lekempti grade 5 (ULK5) coffee and Whitish Wollega Sesame Seed Grade3 (WWSS3) prices obtained from Ethiopia commodity exchange (ECX) market to analyse the prices fluctuations.The natures of log-returns of the prices exhibit a...

متن کامل

Numerical algorithm for discrete barrier option pricing in a Black-Scholes model with stationary process

In this article, we propose a numerical algorithm for computing price of discrete single and double barrier option under the emph{Black-Scholes} model. In virtue of some general transformations, the partial differential equations of option pricing in different monitoring dates are converted into simple diffusion equations. The present method is fast compared to alterna...

متن کامل

A Reduced Basis for Option Pricing

We introduce a reduced basis method for the efficient numerical solution of partial integro-differential equations which arise in option pricing theory. Our method uses a basis of functions constructed from a sequence of Black-Scholes solutions with different volatilities. We show that this choice of basis leads to a sparse representation of option pricing functions, yielding an approximation w...

متن کامل

Option pricing under the double stochastic volatility with double jump model

In this paper, we deal with the pricing of power options when the dynamics of the risky underling asset follows the double stochastic volatility with double jump model. We prove efficiency of our considered model by fast Fourier transform method, Monte Carlo simulation and numerical results using power call options i.e. Monte Carlo simulation and numerical results show that the fast Fourier tra...

متن کامل

Reduced order models for pricing European and American options under stochastic volatility and jump-diffusion models

European options can be priced by solving parabolic partial(-integro) differential equations under stochastic volatility and jump-diffusion models like Heston, Merton, and Bates models. American option prices can be obtained by solving linear complementary problems (LCPs) with the same operators. A finite difference discretization leads to a so-called full order model (FOM). Reduced order model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017